

A. Albrechtová, M. Braun

WHAT IMPACT DO THE NEXT-DAY RES PROJECTIONS HAVE ON THE ENERGY MIX?

INTRODUCTION – MOTIVATION

- Last 20 years brought many changes
 - Shift from state-owned monopoly to deregulated structures
 - Market dynamics more complex
 - Characteristics of electricity as commodity
 - Nearly instantaneous
 - Restrictions on transmission
 - Demand is inelastic (short-term)
 - Interesting how these developments affect prices on the electricity market

INTRODUCTION – PROBLEM STATEMENT

- Examining the day-ahead forecast for RES in DE
- Effect on the spot-market price
- RES are a price maker
- Wind and solar energy production is highly variable

INTRODUCTION – RESEARCH QUESTIONS

- What impact do the next-day projections on RES availability have on the energy mix?
- What differences have to be considered in the structure of the markets in CZ and AT (With respect to trade from DE)?

INTRODUCTION – RES EFFECT ON MERIT-ORDER

€/MWh €/MWh Demand Supply Supply Day Peak Night Gas turbines . . Demand Gas turbines Price A (low wind Price Condensing Condensing plants plants Price B CHP (high wind) plants CHP plants Wind and nuclear Wind and nuclear MWh MWh Source: Risø DTU

- Hourly spot market data for 2013
 - Wholesale electricity markets from DE, AT, CZ
 - Data from EPEX, EXAA, and OTE/PXE
 - Next-day and day-ahead prices
- Historical hourly data for wind and solar
 - Next-day projections
 - Actual production
 - Expected grid load
 - Actual grid load

- Using two illustrative case studies
 - How does the market behave with respect to RES production
- Time series analysis
 - Austria R
 - Czech Republic Stata

RESULTS – CZECH REPUBLIC

- Spot price is highly correlated to RES production (~ 93%)
- Wind and solar have an effect on lowering the price of electricity
 - High production of variable res means lower market price
- Multiple regression equation was formulated
 - *Spotprice_{GER}*
 - $= \beta_0 + \beta_1 Spotprice_{GER_{T_1}} + \beta_2 Spotprice_{GER_{T_2}} + \beta_3 Windproduction_{GER}$
 - + $\beta_4 Photovoltaicproduction_{GER} + \beta_5 Allowences + \beta_6 Coal + \beta_7 Gas$
 - + $\beta_8 Consumption_{GER} + \varepsilon$

RESULTS – CZECH REPUBLIC

- One more MW from PV power plant → spot price -0.0007 €
- 6217 MW (real PV production in Jan 2013) → spot price -4.9€
- One more MW from win power pland → spot price -0.0015 €
- 15,175 MW → spot price 23 €

Source SS		df	M	MS		Numbe	r of obs	= 8		
Model Residual	2145334.15 227136.18	8 8749	268166	.769		F(8 Prob R-squ	, 8749) > F ared	=10329 = 0.0 = 0.9	.45 000 043	
Total	2372470.33	8757 270.922728			Adj R-squ Root MSE		ed = 0.9042 = 5.0952			
Spo	tprice_GER		Coef.	Std.	Err.	t	P> t	[95	% Conf.	Interval]
Spotprice GER T1		.9270143		.0102	447	90.49	0.000	.90	69323	.9470963
Spotprice GER T2		3449067		.008422		-40.95	0.000	3614159		3283975
Consumption_GER		.0005772		.0000103		55.98	0.000	.000557		.0005974
Windproduction_GER		0006112		.0000143		-42.66	0.000	0000006392		0005831
Photovoltaicproduction_GER		0004521		.0000126		-35.74	0.000	0.0000004769		0004273
83 1	.8866638		.0851966		10.41	0.000	.71	96585	1.053669	
	.001726		.0087655		0.20	0.844	01	54564	.0189084	
	.1	394607	.0307462		4.54	0.000	.0791908		.1997305	
	-17	.83666	1.140	829	-15.63	0.000	-20.	07295	-15.60036	

RESULTS – CZECH REPUBLIC

- In CZ RES decrease rentability of conventional energy producers
 - Mainly coal power will be affected (long-term)
 - Gas can be used to fill "gaps" and is not that critical (high MC)
- Base load electricity production will be affected
 - Nucear is cheap, because of low MC
 - Hard to adapt to grid load fluctuations (has to be levelled out by other producers)

- Germany is the biggest supplier of RES in Europe
- Austria mainly imports energy from DE and CZ
 - Quite saturated with respect to hydropower
 - Wind production was strongly developed, potential for solar (costly)
- Important role of transnational market dynamics
 - Interconnectivity (EU4: DE, AT, CH, FR)
 - With respect to DE: grid congestion problem (last 10 years)
 - Stronger interconnectivity alone is not the solution

RESULTS – AUSTRIA

Austria market is very small (EXAA trade volume is about 3.2% from EPEX)

Strong influence of German market

We see already some stationarity (here: per day basis)

Fluctuation through RES production

Solar next day correlates with diurnal price development

<pre>call: lm(formula = diff(SolDec1std) ~ diff(-tsEXAADec1std))</pre>
Residuals: Min 1Q Median 3Q Max -1.55993 -0.09173 -0.01490 0.06936 1.94781
Coefficients: Estimate Std. Error t value Pr(> t)
(Intercept) -5.266e-05 1.569e-02 -0.003 0.997 diff(-tsEXAADec1std) 2.338e-01 4.360e-02 5.363 1.1e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4276 on 741 degrees of freedom Multiple R-squared: 0.03736, Adjusted R-squared: 0.03606 F-statistic: 28.76 on 1 and 741 DF, p-value: 1.097e-07

CCF for wind shows correlation of 52% (Time series and wind next-day).

- Our research indicates that
 - AT has more possibilities to cope with RES fluctuations
 - AT is a rather small market which is highly shaped by Germany
 - CZ there are two pathways
 - Either further integrate market to increase interconnectedness
 - No mid-term integration to avoid negative effects on the national grid
 - DE will affect electricity markets in whole Europe (comparison with other studies)
 - If a highly interconnected European grid is desirable a decentralised, resilient and manageable grid is crucial
 - Otherwise there will be negative effects due to congestion and variability

CONCLUSION AND OUTLOOK

- Spot-market price is highly influenced by RES availability
 - Next-day projection errors can lead to large price deviations
 - Deviations especially large if cumulated error of RES projection and grid load
 - Market can level out such fluctuations (up to a certain point)
- Grid resilience is crucial, because future RES development is projected to increase
 - EU2020 goals and farther
 - Decentralisation where possible
 - Development of bulk electricity storate possibilities
- Generally our results are in line with other recent publications (other countries)